The Effect of Pressure on the Transition of ZrO2

by Osamu FUKUNAGA, Shigeru MINOMURA, Shinroku SAITO The 3rd Discussion on the Basic Science of Ceramics at Kyoto in 1965

Abstract

The effect of pressure on the monoclinic-tetragonal reversible transition of ZrO_2 was investigated. The pressure dependency of the above transition was estimated to be $dT_c/dP = -3.02 \times 10^{-2}$ deg.bar⁻¹ from the thermodynamic data of ZrO_2 by Whitney. As the experimental result has not been obtained yet, the experiment of the pressure effect on this transition was tried, to compare it with the calculated value.

A Kennedy type piston-cylinder high pressure apparatus was used and the transition points were detected by the electrical resistance measurement of ZrO₂ under high temperatures and high pressures. The measurements were carried out in the temperature and pressure ranges up to 1300°C and 30 kb, respectively.

One sample of $2rO_2$ used in the present experiment is the $2rO_2$ powder obtained by Monsanto Chemical Co. Using the above sample, the transition point and the molar volume change were measured by High temperature X-ray diffraction at the atmospheric pressure. The monoclinic-tetragonal transition point $T_c^{M \rightarrow T}$ was $1140^{\circ}C$ and the molar volume change $\Delta V \xrightarrow{M \rightarrow T}$ was $-0.95 \text{ cm}^3/\text{mol}$. As the entropy change, $S \xrightarrow{M \rightarrow T}$, the value by Coughlim and King was used, which is $S \xrightarrow{M \rightarrow T} = 0.96 \text{ cal/mol.deg}$. Using the Clausius-Clapeyron equation, the pressure effect on the transion was calculated to be -1.2×10^{-2} deg.bar. On the other hand, the pressure dependency of the transition point obtained by the experiment was -1.6×10^{-2} deg.bar.